Histological Subtypes of Lung Cancer: A Nordic Perspective and Molecular pathology

Cristian Ortiz-Villalón MD PhD MBA

Senior Consultant Pathologist Head of Unit Clinical Genetics, Pathology and Molecular Diagnostics, Malmö-Sweden Affiliated researcher Karolinska Institute – OnkPat Guest Professor, Nagasaki University, Japan Co-founder, Pathology Science OÜ

Disclosures

- Has worked as a Senior Director for AstraZeneca, holding shares
- Speaker for Boehringer Ingelheim, Smart in Media, Deciphex, Roche, Bayer
- Scientific advisor for Deciphex, Smart in Media, Lumito.
- Co-founder of Pathology Science OÜ

KVAST
Remissutgåvor
Allmänna dokument
Equalis
Referensbilder
Swedac
KVAST styrgrupp
Bröstpatologi
Digital patologi
Endokrin patologi
Exfoliativ cytologi
Övrigt: utskärningsmallar, SNOMED etc
Okänd primärtumör ("CUP")
Gastrointestinal patologi
Gynekologisk patologi

Föreningen KVAST Utbildning

oildning English

L KONTAKTA OSS

Thoraxpatologi

Medlemmar i arbetsgruppen

Kvalitetsindikatorer

Nationella vårdprogram

KVAST-dokument

Gamla (ej aktuella) KVAST-dokument

XI. Rekommenderade klassifikationssystem

För histologisk indelning av lungtumörer ska senaste WHO-klassifikation användas, idag klassifikationen från 2021. En relevant publikation från IASLC rörande diagnostiska immunfärgningar vid lungcancer publicerades 2019 (Yatabe förstanamn). För stadieindelning ska TNM9 användas. I Appendix 3 och 4 finns sammanfattning av klassifikation/nomenklatur respektive stadieindelning.

Histologic Classification of Malignant Epithelial Lung Tumors

(2021 WHO Classification, Simplified Version)

Adenocarcinoma

🔊 Squamous cell carcinoma

Large cell carcinoma

Neuroendocrine cancer

Sarcomatoid carcinoma

Other epithelial tumours

Novelties of 2004-2021 WHO "blue book"

The importance of small biopsies has changed over the time.....

1967 HE 1981 HE & Mucin 1999 HE, Mucin & IHC 2004 HE, Mucin, IHC & Genetics

- A new classification for small biopsy/cytology samples As in 2011/2013 IALSCT/ERS classification
- Emphasis on genetics for predictive biomarkers in advanced lung cancer
- A different approach to lung adenocarcinoma (AIS, MIA... PATTERNS) As in 2011 IALSC/ATS/ERS classification
- The issue of large cell carcinoma, squamous carcinoma and NET
- Reclassifying other tumors (NUT Hamartoma, myxoid sarcoma...)

NSCLC: 70% in Advanced Stage Small material (biopsy/cytolology)

2011 Feb;6(2):244-85. doi: 10.1097/JTO.obo13e318206a221. Sigel RA Ca Cancer J Clin 2012:62: 10 C.A. Ridge, Epidemiology of lung cancer Semin Interven Radiol, 30 (2013)

Histological and molecular subtypes in nonsmall cell lung carcinoma (NSCLC).

Lukas Bubendorf et al. Eur Respir Rev 2017;26:170007

Type of material

While the number of tests over the past decade has increased, sample size (predominantly small biopsies or cytological specimens) has decreased.

Small Samples: NSCC Subtyping Morphological criteria:
Glandular differentiation and/or mucin → ADC
Intercellular bridges and/or keratinization → SCC

•Established morphological criteria absent – do IHC:

TTF1+ \rightarrow NSCC, favor ADC p40+ \rightarrow NSCC, favor SCC Inconclusive \rightarrow NSCC, NOS

Morphology/stains	Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Morphological squamous cell patterns clearly present	Squamous cell carcinoma	Squamous cell carcinoma

Terminology in small biopsy and cytology versus resection specimens for squamous cell carcinoma

Keratinization Intercellular bridges NSCLC with IHC P40 (+)

Basaloid squamous cell carcinoma • Poorly diff cancer with proliferation of small cells with lobular architecture and peripheral palisading.

• The cells lack squamous morphology

• IHC for SCC (+)

Terminology in small biopsy and cytology versus resection specimens for adenocarcinoma

Morphology/stains	Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Morphological adenocarcinoma patterns clearly present	Adenocarcinoma (patterns)	ADC predominant pattern (L,A,P,S,M)
	Adenocarcinoma with lepidic pattern (if pure, list the differential diagnosis on the right and add a comment that an invasive component cannot be excluded)	Minimally invasive adenocarcinoma, adenocarcinoma in situ, or an invasive adenocarcinoma with a lepidic component
	Invasive mucinous adenocarcinoma (list the patterns; use the term "mucinous adenocarcinoma with lepidic pattern" if pure lepidic pattern and mention the differential diagnosis listed on the right)	Invasive mucinous adenocarcinoma Minimally invasive adenocarcinoma or adenocarcinoma in situ, mucinous type
	Adenocarcinoma with colloid features	Colloid adenocarcinoma
	Adenocarcinoma with fetal features	Fetal adenocarcinoma
	Adenocarcinoma with enteric features	Enteric adenocarcinoma

Invasive Adenocarcinoma

Minimally invasive Adenocarcinoma

≤ 3cm lepidic predominant

- ≤ 0.5cm invasion:
- invasive subtypes
- tumor cells infiltr. stroma

no invasion of lymphatics, blood vessels or pleura, no tumor necrosis

Adenocarcinoma with lepidic pattern (if pure, list the differential diagnosis on the right and add a comment that an invasive component cannot be excluded)

Resection specimens Invasive mucinous adenocarcinoma

Minimally invasive adenocarcinoma or adenocarcinoma in situ, mucinous type

Small biopsies

Invasive mucinous adenocarcinoma (list the patterns; use the term "mucinous adenocarcinoma with lepidic pattern" if pure lepidic pattern and mention the differential diagnosis)

Small biopsies

Adenocarcinoma with colloid features

Specimens

Colloid adenocarcinoma

Small biopsies

Adenocarcinoma with fetal features

Specimens

Fetal adenocarcinoma

Morphology/stains	Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Morphological squamous cell patterns not present, but supported by stains (i.e. p40+)	Non-small cell carcinoma, favour squamous cell carcinoma	Squamous cell carcinoma (non- keratinizing pattern may be a component of the tumour)

Terminology in small biopsy and cytology versus resection specimens for Non-small cell cancer

Morphology/stains	Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Morphological adenocarcinoma patterns not present, but supported by special stains (i.e. TTF1+)	Non-small cell carcinoma, favour adenocarcinoma	Adenocarcinoma (solid pattern may be just one component of the tumour)

Terminology in small biopsy and cytology versus resection specimens for Non-small cell cancer

Morphology/stains	Terminology for small biopsies and cytology specimens	Terminology for resection specimens
No clear adenocarcinoma, squamous, or neuroendocrine morphology or staining pattern	Non-small cell carcinoma NOS	Large cell carcinoma

Terminology in small biopsy and cytology versus resection specimens for Non-small cell cancer Terminology in small biopsy and cytology versus resection specimens for Small cell carcinoma

Scant cytoplasm Poorly defined cell borders Finely dispersed granular nuclear chromatin Absent or inconspicuous nucleoli Combined SCLC

Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Small cell carcinoma	Small cell carcinoma

Terminology in small biopsy and cytology versus resection specimens for Large cell neuroendocrine carcinoma

NE morphology (rosettes, peripheral palisading) IHC NE markers Highly related to smoking Location: Peripheral, upper lobes 80%, Central 20%

Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Large cell neuroendocrine carcinoma	Non-small cell carcinoma with neuroendocrine morphology and positive neuroendocrine markers, possible large cell neuroendocrine carcinoma

Terminology in small biopsy and cytology versus resection specimens for Adenosquamous carcinoma

Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Morphological squamous cell and adenocarcinoma patterns both present: non- small cell carcinoma NOS Comment that adenocarcinoma and squamous components are present, and that this could represent adenosquamous carcinoma	Adenosquamous carcinoma (if both components ≥ 10%)

Terminology for small biopsies and cytology specimens	Terminology for resection specimens
Non-small cell carcinoma with spindle cell and/or giant cell carcinoma Mention if adenocarcinoma or squamous carcinoma is present. Comment that this could represent a pleomorphic carcinoma; however, that diagnosis requires a resection specimen.	Pleomorphic, spindle cell, and/or giant cell carcinoma

Poorly diff NSCC that contains at least 10% spindle / giant cells or carcinoma that contains only spindle or giant cells

Tobacco smokers Account for a small percentage of primary lung neoplasms Large peripheral mass (usually upper lobe) Aggressive tumours. The small bowel is one of the sites that pleomorphic carcinomas tend to metastasize Macroscopy:

> Well circumscribed, grey/tan masses Central or peripheral tumours > 5 cm Necrosis and cavitation

Terminology in small biopsy and cytology versus resection specimens for Pleomorphic carcinoma

Microscopic features

- Pleomorphic carcinoma shows malignant spindle cells or giant cells > 10%.
- Squamous cell carcinoma (SCC)
- Adenocarcinoma (ADC)
- Large cell carcinoma (LCC)
- In small biopsy sarcomatoid elements may be described, but definitive diagnosis is NOT POSSIBLE
 - Predominant sarcomatoid pattern
 - Predominant epithelial cell type

Spindle cell carcinoma consists almost entirely of malignant spindle cells

Giant carcinoma cells show eosinophilicgranular cytoplasm, large multinucleated nuclei and vesicular chromatin with prominent nucleoli.

Giant cell carcinoma

Are biopsies the same as surgical samples ?

Immunhistochemistry by Means of Widely Agreed-Upon Markers (Cytokeratins 5/6 and 7, p63, Thyroid Transcription Factor-1, and Vimentin) on Small Biopsies of Non-small Cell Lung Cancer Effectively Parallels the Corresponding Profiling and Eventual Diagnoses on Surgical Specimens

Giuseppe Pelosi, MD, MIAC,*† Giulio Rossi, MD,‡ Fabrizio Bianchi, DSc, PhD,§ Patrick Maisonneuve, Eng, Domenico Galetta, MD,¶ Angelica Sonzogni, MD,* Giulia Veronesi, MD,¶ Lorenzo Spaggiari, MD,†¶ Mauro Papotti, MD,# Mattia Barbareschi, MD,** Paolo Graziano, MD,†† Andrea Decensi, MD,‡‡ Alberto Cavazza, MD,§§ and Giuseppe Viale, MD, FRCPath*†

Journal of Thoracic Oncology • Volume 6, Number 5, May 2011

TABLE 3. Comparison of Revised Biopsies with Surgical Specimens by Morphology and Immunohistochemistry

	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Diagnostic Accuracy (95% CI)
Revised biopsies vs. surgical specimens		-			
Squamous cell carcinoma	30/30	29/33	30/34	29/29	59/63
	100 (80-100)	88 (72-97)	88 (73-97)	100 (88-100)	94 (85-98)
Adenocarcinoma	22/22	35/41	22/28	35/35	57/63
	100 (85-100)	85 (71-94)	79 (59-92)	100 (90-100)	90 (80-96)
Sarcomatoid carcinoma	1/8	55/55	1/1	55/62	56/63
	13 (3-53)	100 (94-100)	100 (2-100)	89 (78-95)	94 (85-98)
Immunostained biopsies vs. surgical specimens					
Squamous cell carcinoma	30/30	30/31	30/31	30/30	62/63
	100 (88-100)	97 (83-100)	97 (83-100)	100 (88-100)	98 (91-100)
Adenocarcinoma	22/22	40/41	22/25	40/40	62/63
	100 (85-100)	98 (87-100)	88 (69-97)	100 (92-100)	98 (91-100)
Sarcomatoid carcinoma	5/8	55/55	5/5 ^a	55/58	60/63
	63 (24-91)	100 (94-100)	100 (48-100)	95 (86-99)	95 (87-99)
Adenosquamous carcinoma	2/2	61/61	2/2	61/61	63/63
	100 (16-100)	100 (94-100)	100 (16-100)	100 (94-100)	100 (94-100)

Optimal Immunohistochemical Markers For Distinguishing Lung Adenocarcinomas From Squamous Cell Carcinomas in Small Tumor Samples

Jefferson Terry, MD, PhD,* Samuel Leung, MSc,* Janessa Laskin, MD,† Kevin O. Leslie, MD,‡ Allen M. Gown, MD,§ and Diana N. Ionescu, MD*

Marker	Subtype	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
CK 5/6	SCC	66 (60-72)	95 (92-98)	94 (90-97)	72 (66-77)
CK7	ADC	93 (90-97)	63 (57-70)	70 (64-75)	91 (86-95)
HMWCK	SCC	69 (63-75)	83 (78-88)	82 (76-87)	71 (65-76)
Muci	ADC	30 (24-36)	91 (87-94)	74 (65-84)	59 (54-64)
Napsin A	ADC	59 (52-65)	94 (91-97)	90 (84-95)	72 (67-77)
NTRK1	SCC	70 (64-76)	91 (86-94)	89 (84-94)	73 (68-78)
NTRK2	SCC	53 (46-59)	97 (94-99)	94 (90-98)	65 (59-70)
p63	SCC	84 (79-88)	85 (80-90)	86 (81-91)	82 (77-87)
TTF1	ADC	62 (56-69)	92 (89-96)	88 (83-93)	73 (68-78)

(Am J Surg Pathol 2010;34:1805-1811)

....2015

...recommended one marker for squamous (P40), one marker for adenocarcinoma (TTF1)

Diagnosis of Lung Cancer in Small Biopsies and Cytology Implications of the 2011 International Association for the Study of Lung Cancer/ American Thoracic Society/European Respiratory Society Classification

William D. Travis, MD; Elsabeth Brambilla, MD; Masayuki Noguchi, MD; Andrew G. Nicholson, DM; Kim Geisinger, MD; Yasashi Yatabe, MD; Yaichi Ishikawa, MD; Ignacio Wistaba, MD; Douglas B. Flieder, MD; Wilhur Franklin, MD; Adi Gazdar, MD; Philip S. Hashton: MD; Douglas W. Henderson, MD; Keith M. Ken, MD; Iver Petersen, MD; Victor Roggli, MD; Enik Thunnissen, MD; Ming Tsao, MD

The new International Association for the Study of Long Concel American Thoracic Society/European Respiratory Society lung adenocarcinoma classification provides, for

classified as NGLC, not otherwise specified. Not other-wise specified arcsimams that stain with adeoacarcinoma-markers are clossified as NSCLC, force aderoacarcinoma, and tumors, that stain only with squamous markers are classified as NSCLC, force squamous cell carcinoma. The receil for every insultation for develop a multidisciplinary lissue management strategy to obtain these small speci-ness and process them, not only for digraposis that also the nolocular treling and evaluation of markers of resistance to thereas in the instead. Io therapy, is emphasized. (Arch Pathol Lab Med. 2013;137:668–684; doi: 10.5858/ irpa.2012-0263-RA)

			Ш
Terminology and criteria in non-resection specimens	A.G. Nicholson K. Gesinger S.C. Asner F. AcOnyot L. Bubandor J-H. Ohung K.M. Nerr	M. Moyerson M. Nogucel W. Olizewetki N. Reithfordian G. Reity G. Scagliott W.D. Traves	

New small Mapsylophings terminology	Rephilophiles	2015 WHO shareffication
Advectoreness (decide decidade pallena proset)	Marghangard adamsormers patients facely present	Advancements Producement pathen Asses Pagilary Salid Micropoptiny
Advocurrences with leptic pattern (I pars, wild a comment that an imaging component cannot be advocurrence or contacted)		Distantly common addressments or information of oth
Insuise trazicios adescarciona Unicida palaris presid, un ha lan macina adescarcionas all'ispito palari i pari lipito palari)		Tester Score (Income)
Admocartmonic with colloid features		Called abroximation
Advocarcroms with Infe Instance		Vold Alexandro
Advector server with entropy		Toles almostisms
Non-mail tal tactores, base alimeterment ²	Marphalopcal admospresson patients net present, bul supported by special states (i.e. TDT position)	Adams accounts (which pallers using the part and companied of the Name)?
Nyaeman of same	Merghanispical apparticula cell publicità picarly present	Nyamme of sectors
Non-mode of conserve	Monphilogoal squarmon cell patients nel present, bul supported leg vitante (Le. phD presiliet)	Squarese cut partnersi proclambinong patient may be a composed of the tensor?
Name neural and communities, and observation specifical?	No clear adencearmona, ingumous, or manachilistone merchology or sharing pattern	Large out cargo and

TTF1 and Napsin: first of all the right clone

- TTF-1 works well for lung adenocarcinoma and NE tumors with clone 8G7G3/1 (dilution > 1:500-1000)
- SPT24, A22-A clones are less specific
- MoAb to napsin-A is more specific than polyclonal antiserum

ΔNp63 (p40) and Thyroid Transcription Factor-1 Immunoreactivity on Small Biopsies or Cellblocks for Typing Non-small Cell Lung Cancer

A Novel Two-Hit, Sparing-Material Approach

Giuseppe Pelosi, MD, MIAC, *† Alessandra Fabbri, MD, * Fabrizio Bianchi, DSc, PhD, † Patrick Maisonneuve, Eng, § Giulio Rossi, MD, || Mattia Barbareschi, MD, * Paolo Graziano, MD, # Alberto Cavazza, MD, ** Natasha Rekhtman, MD, PhD, †† Ugo Pastorino, MD, ‡‡ Paolo Scanagatta, MD, ‡‡ and Mauro Papotti, MD§§

(J Thorac Oncol. 2012;7: 281-290)

P63 may be positive in 20-30% of adenocarcinomas

Immunoreactivity for Thyroid Transcription Factor-1 in Stage I Non–Small Cell Carcinomas of the Lung

The American Journal of Surgical Pathology 25(3): 363-372, 2001

Giuseppe Pelosi, M.D., M.I.A.C., Filippo Fraggetta, M.D., Felice Pasini, M.D., Patrick Maisonneuve, ING., Angelica Sonzogni, M.D., Antonio Iannucci, M.D., Alberto Terzi, M.D., Enrica Bresaola, C.T.(I.A.C.), C.M.I.A.C., Francesco Valduga, M.D., Carmelo Lupo, LAB. TECH., and Giuseppe Viale, M.D., F.R.C.Path.

Emerging Targeted Therapies in Non-Small-Cell Lung Cancer (NSCLC)

Cancers 2025, 17, 353

Guideline recommendation

Lung cancer 154 (2021) 161-175

Genetic alterations in NSCLC and respective targeted therapies

Genetic Alteration	Adenocarcinoma	Squamous	Other	Targeted Therapeutics
KRAS				
G12C mutation	13–17%	2–4%	Rare	sotorasib, adagrasib divarasib, opunarasib olomorasib, garsorasib
G12D mutation	14–18%	1–1.5%	Rare	MRTX-1133, HRS-4642, LY3962673 RMC-9805, ASP3082
EGFR				
Ex19del	21%	3–5%	Rare	EGFR TKIs (1st-3rd generation)
Exon 21 L858R	29%	1–3%	Rare	EGFR TKIs (1st-3rd generation)
Exon20ins	2–3%	<1%	Rare	amivantamab, furmonertinib sunvozertinib
Amplification	10-15%	15-20%	Rare	EGFR TKIs (1st-3rd generation)
Overexpression	40-60%	60-89%	Rare	Not predictive of response to TKI

Genetic alterations in NSCLC and respective targeted therapies

HER 2				
Mutation exons 18–21	1–4%	<1%	Rare	HER2 TKIs (zongertinib, BAY2927088), ADC (TDXd SHR-A1811), monoclonocal antibody and BiTEs
Amplification	2–5%	1–2%	Rare	ADC (TDXd SHR-A1811), monoclonocal antibody and BiTEs
Overexpression	6–30%	2–10%	Rare	ADC (TDXd SHR-A1811), monoclonocal antibody and BiTEs
MET				
METex14 skipping mutations	3–4%	1–2%	15–20% in sarcomatoid	TKIs crizotinib, cabozantinib, capmatinib, tepotinib) and MET-ADC (Teliso-V, REGN5093-M114)
Amplification	1–5% (High-level <1%)	2–5%	~1–2%	TKIs crizotinib, cabozantinib, capmatinib, tepotinib) and MET-ADC (Teliso-V, REGN5093-M114)
Overexpression	15–50%	20–60%	Rare	MET-ADC (Teliso-V, REGN5093-M114)

Genetic alterations in NSCLC and respective targeted therapies

RET				
Fusion	1–2%	<0.1%	Rare	RET-targeting inhibitors like selpercatinib and pralsetinib.
FGFR				
Fusion	1–2%	<0.1%		FGFR inhibitors, such as erdafitinib, pemigatinib, and infigratinib.
TROP2				
Overexpression	20–30%	10–20%	Rare	Therapeutic antibodies (e.g., sacituzumab govitecan

Non-small cell carcinoma (NSCLC) algorithm for classification, immunohistoc hemistry, and biomarker testing.

- Journal of the American Society of Cytopathology
- Volume 9, Issue 5, September–October 2020, Pages 332-345

EGFR Mutations in NSCLC.

Seen primarily in *non-smoking women* with peripheral *non-mucinous ADC*/well to moderately differentiated adenocarcinoma with prominent *lepidic growth*.

EGFR *mutations at exon #19 and 21* are tied to clinical responsiveness to TKIs.

Poor response tied to poorly differentiated, TTFI negative tumors; Kras mutations; progression of EGFR mutations.

The most common mutations in EGFR in lung cancer

SNV in exon 21 of EGFR (c.2573 T>G) encoding a substitution of leucine to arginine at codon 858 (L858R). Combined insertion/deletion (indel) in exon 19 of EGFR confer sensitivity to EGFR TKIs. Red, a nucleotide or amino acid that has been altered in the mutant form.

The liquid biopsy concept - circulating cell-free DNA and circulating tumor cells -

"liquid biopsy"

Applications of liquid biopsy

- Early detection
- Assessment of molecular heterogeneity of overall disease
- Monitoring of tumor dynamics
- Evaluation of early treatment response
- Monitoring of minimal residual disease
- Assessement of evolution of therapy resistance in real time

J Clin Oncol 2014; 32:579-586

 the half-life of cfDNA in the circulation as between 16 minutes and 2.5 hours

ALK gene rearrangement

Ventana ALK (D₅F₃) CDx assay- normal appendix as external IHC control

appendix

Liver metastasis of an ALKpositive adenocarcinoma

ROS1 gene rearrangement

ROS1 translocation in NSCLC

- The official name of this gene is "c-ros oncogene 1, receptor tyrosine kinase." ROS1 is the gene's official symbol.
- ROS1 is a receptor tyrosine kinase of the insulin receptor family.
- Orphan receptor tyrosine kinase (RTK) that plays a role in epithelial cell differentiation and regionalization of the proximal epididymal epithelium.
- Chromosomal rearrangements involving the ROS1 gene were originally described in glioblastomas, where ROS1 (chromosome 6q22) is fused to the FIG gene (chromosome 6q22 immediately adjacent to ROS1)
- identified in 1–2% of unselected patients with NSCLCs

ROS1 IHC (D4D6 rmAb, Cell Signaling)

<u>Expert Consensus Opinion</u>.—ROS1 IHC may be used as a screening test in advanced-stage lung adenocarcinoma patients; however, positive ROS1 IHC results should be confirmed by a molecular or cytogenetic method.

ROS1 FISH with break apart probe

ROS1 IHC

Reactive pneumocytes are positive!!!

hysiology or Medic

oly at Karolinaka institutet has decided to a re rize in Physiology or Medicine Join

ies P. Allison suku Honjo

er therapy by inhibition of negative immune

PD-L1

PD-L1 Biomarker for Immunotherapy

PD-L1 Negative

PD-L1 Positive (predictive of response)

Less response		More response				
1 <mark>%</mark>	5%	109	% 50%	cell positive)	
		Table 1. Five-D	rug PD-L1 Assay Trial-Va	alidated Combinations		
		Drug	Company	PD-L1 Diagnostic Ab Clone	Staining Platform	Clinically Relevant Cutoffs
		Nivolumab Pembrolizumab	Bristol-Myers Squibb Merck/Merck Sharp and Dohme	28-8 (Dako) 22C3 (Dako)	Dako Link 48 Dako Link 48	TC ≥1%, 5%, and 10% TC ≥ 1% and 50%
		Atezolizumab	Genentech/Roche	SP142 (Ventana)	Ventana BenchMark ULTRA	TC \geq 1%, 10%, and 50% IC > 1%, 5%, and 10%
		Durvalumab	AstraZeneca	SP263 (Ventana)	Ventana Benchmark	TC ≥ 25%
		Avelumab	Pfizer/Merck Serono	73-10 (Dako)	Dako Link 48	TC \geq 1%, 50%, and 80%

"Variable according to trials and line of therapy. Modified with permission from Tsao et al."

PD-L1, programmed death ligand 1; Ab, antibody; TC, tumor cells by percentage staining for PD-L1; JC, percentage of tumor area infiltrated by PD-L1-positive immune cells.

Gandhi L, et al. AACR 2014. Abstract CT105.

Clinicopathological significance of the expression of PD-L1 in non-small cell lung cancer

https://doi.org/10.1016/j.anndiagpath.2021.151701

NTRK

Article NTRK Gene Expression in Non-Small-Cell Lung Cancer

Jair Gutierrez-Herrera ¹, M. Angeles Montero-Fernandez ², Georgia Kokaraki ³, Luigi De Petris ^{3,4}, Raul Maia Falcão ⁵, Manuel Molina-Centelles ¹, Ricardo Guijarro ^{3,6}, Simon Ekman ^{3,4}, and Cristian Ortiz-Villalón ^{3,7,*}

Cases	Fusion Partner	Partner 1	Partner 2	Histology	NTRK-IHC	Other Somatic Mutations
Sample 1	AFAP1-NTRK2	Chr4	Chr9	Adca	+1	TP53 *, PIK3CA
Sample 3	ALK-KCNQ5	Chr2	Chr6	SqCC	-	
Sample 4	ALK-CTLC	Chr2	Chr17	Adca	÷	
Sample 5	ALK-HIP1	Chr2	Chr7	SqCC	-	PTEN
Sample 6	ALK-HIP1	Chr2	Chr7	SqCC	-	
Sample 6	ALK-KCNQ5	Chr2	Chr6	SqCC	-	
Sample 7	TPM3-NTRK1	Chr1	Chr1	SqCC	+2	
Sample 7	ALK-VCL	Chr2	Chr10	SqCC	-	
Sample 8	ALK-HIP1	Chr2	Chr7	SqCC	÷.	APC
Sample 8	ROS1-CEP85L	Chr6	Chr6	SqCC	-	
Sample 9	PCM1-NRG1	Chr8	Chr8	Adca		
Sample 10	RASEF-NTRK2	Chr9	Chr9	SqCC	+3	
Sample 10	MET-KIF5B	Chr7	Chr10	SqCC		
Sample 12	RET-SPECC1L	Chr10	Chr22	SqCC	-	NTRK1, RET
Sample 13	ROS1-GOPC	Chr6	Chr6	LCC	(1)	BRAF
Sample 13	MET-CAPZA2	Chr7	Chr7	LCC	-	

A

С

2025

Sensitizing EGFR Mutations ALK Rearrangement ROS1 Rearrangement BRAF V600E Point Mutation RET Rearrangements NTRK Gene Fusions MET Exon 14 Skipping Mutations PD-L1 Expression* KRAS Mutations MET Amplifications ERBB2 (HER2) Alterations

2018-2019

NCCN Guidelines Version 4,2021, Kohno T et al, Transl Lung Cancer Res. 2015 Apr; 4(2): 156–164.

Gene/protein	Predictive alteration	Methodology (in tissue)
EGFR	Mutation	PCR: sanger, real-time PCR and NGS
ALK	Rearrangement	IHC, FISH and NGS
ROS1	Rearrangement	IHC (screening), FISH and NGS
BRAF V600	Mutation	PCR: sanger, real-time PCR and NGS
PD-L1	Overexpression	IHC

EGFR epidermal growth factor receptor, *FISH* fluorescence in situ hybridisation, *H&E* haematoxylin/eosin, *IHC* immunohistochemistry, *NGS* next-generation sequencing, *NSCLC* non-small-cell lung cancer, *PCR* polymerase chain reaction, *PD-L1* programmed death ligand-1

Gen	Predictive alteration	Methodology (in tissue)
3% HEI	2 Mutation	PCR: sanger, real-time PCR and NGS
	Amplification	FISH, NGS, real-time PCR
3-7%ME	Mutation	NGS
	Amplification	FISH, NGS, real-time PCR
1-2%RE7	Rearrangement	FISH and NGS
<1% NTR	K Rearrangement	IHC (screening) and NGS
TM	Mutations*	NGS

FISH fluorescence in situ hybridisation, IHC immunohistochemistry, NGS next-generation sequencing, NSCLC non-small-cell lung cancer, PCR polymerase chain reaction, TMB tumour mutation burden

*Measurement of somatic mutations present in tumour cells

Garrido P et al. Clin Transl Oncol. 2020 Jul;22(7):989-1003; Timar J. Cancer Metastasis Rev (2020) 39:1029-1038

TAKE HOME MESSAGE

"Evaluation of tissue by a pathologist and molecular testing remains the gold standard"

"We have a lot to learn about what liquid biopsy tells us, and for that reason, we should not lose sight of the fact that tissue testing is the basis for nearly all of what we know about targeted therapy."

Clinicians should be aware of the technique used in the lab and the tissue characteristics for the requested parameters.

Pathologists should:

Obtain an informative request form

Preserve precious tissue for molecular marker analyses(in situ or not)/immune check-point inhibitors

Be a full member of the MDD team (taking active part in the diagnostic workup, receiving feedback on treatment results)

